
/It" 5/-'
Q- /"

t

_9t _LJ.

Survivable Algorithms and Redundancy

Management in NASA's Distributed Computing

Systems

FINAL TECHNICAL REPORT

NASA Grant NAG9-426

for the period of

May 1, 1990- April 30, 1992

Dr. Miroslaw Malek

The University of Texas at Austin

Department of Electrical and Computer Engineering
Austin, TX 78712-1084

(NASA-CR-lbq827) SURVIVABLE
ALGC_ITHNS ANO _EOUNDANCY
MANAGemENT IN N&S _eS DISTRI_UTE_

COMPUTING $ YSTE_S Final _eportt

_ay 19VO - 30 APr. 1992 (Texas

univ.) 36 p G3/61

N92-30299

Unclas

011O09O



CONTENTS 1

Contents

1 Introduction 3

2 The Consensus-Based Framework 4

3 Efficient Consensus 8

The Scheduler for Redundancy Management 15

4.1 Estimating tile Numl)er of Required Processors ........ 17

4.2 Conclusions ............................ 17

Application-Specific Fault Tolerance

5.1

5.2

5.3

5.4

5.5

19

NEST: A General Formalized Scheme for l?ault Tolerance . . 20

Naturally Redundant Algorithms ................ 20

A Comprehensive Methodology for Fanlt-Tolel'ant Parallel

Application Design ........................ 22

Tile Evaluation of Fault-Tolerant Techniques: The Cost/Benefit

Relation .............................. 23

Conclusions ............................ 26

6 The

6.1

6.2

6.3

Hybrid Algorithm Technique 28

Simulated Annealing/Tal)ll Search llybrid (SATII) ...... 30

lml)lementatioll of SAT]I .................... 31

Experimental Results ....................... 32

7 Summary and Conclusion 33



LIST OF FIGURES

List of Figures

Consensus problems ill fault luanagement ............ 5

Framework for fault-tolerant systems design .......... 6

Another perspective on fault-tolerant systems design fi'ame-

work ................................. 7

A 27-processor system partitioned into clusters of 3 ...... 9

A graph of message count as a function of system size n for

the HPM and the globM consensus 'algorithm using system

diagnosis techniques ........................ 10

Consensus periodicity as a filnction of required consensus re-

liability for various MTTF and u = 1000, k = 5, t = 1 ..... 13

(a) Time and space overheads needed for fault- tolerant system

implementation. (b) Desirable goal: fault tolerance with low

space and time overheads ..................... 19

Overview of llybrid Algorithm Technique ........... 29

List of Tables

1 Necessary space and time redundancy and faults tolerated by

different fault-tolerant techniques ................ 26
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1 Introduction

The design of survivable algorithnls requires a solid foundation for executing

them. While hardware techniques for fault-tolerant computing are relatively

well understood, fault-tolerant operating systems, as wel[ as fault-tolerant

applications (survivable algorithms), are, by contrast, tittle understood, and

much more work in this field is required. In this report, we outline some

of our work that contributes to the foundation of ultrareliable operating

systems and fault-tolerant algorithm design.

Our philosophy is based on the fundamental concept of consensus. For

a system to be fault tolerant, there must be a multiplicity of resources and

agreement among these resources on system status, be it concerning time

or faults. In the next section, we outline our consensus-based framework for

fault-tolerant system design. We I)elieve that it is l)ossible to deveh) I) a I)rOV -

ably corr(:ct operating syst(:m n).:leus, o_) to I) of whi(:l) al)l)li(:atio)J-Sl)(:(:ilic

fault tolerance techniques are used. Tim (leveh)pm(:nt of the consensus-

based framework and application-specific techniques for result-tolerance are

the core achievements of this project. These, of course, are in addition to

our previous accomplishments in the formalization of fault tolerance, redun-

dancy management, and hybrid algorithm methods for high performance

and dependability.

In the next section, we intro(ltlce our (:onsensus-based h'amework for

fault-tolerant system design. This is followed by a description of a hierar-

chical partitioning method for eHicient consensus. S(;ctioJL ,I intro(lu(:es a

scheduler for redundancy management, and al)i)lication-specific fault toler-

ance is described in Section 5. In Section 6, we give an overview of our

hyl)rid algorithm technique, which is an alternative to the formal al)l)roach

given in Section 5. The report ends with Section 7, which is the summary
and conclusions.
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2 The Consensus-Based Framework

The consensus-I)ased framework for fault-tolerant systems delineates the

foundation and defines tile principles for the specification, modeling, and

design of fault-tolerant computer systems. We ha.ve delined the (:ore, the nu-

cleus concel)ts, and the fimctions that leads to comprehensive design meth-

ods for fault-tolerant computer systems.

Any successful design requires quantitative and/or qualitative goals that

can 1)e verified through measurement. The most successfill designs are based

on particular models that axe accurate abstractions of reality. Of course,

the ultimate model is a copy of the given system itself; however, with the

high complexity of today's systems, such a model is fi'equently unattain-

able. Therefore, models for these systems tend to focus on a specific aspect

of system behavior or a specific layer of system design. We concentrated on

fault-tolerance and develol)ed a layered model in which characteristics such

as synchronicity, message order or lack of it, and 1)oun(led or unbounded

communication delay are well defined for a specific environment. This lay-

ered model [14] is based on the consensus problen_ [2] and is, in our opinion,

fundamental to the design of fault-tolerant multicomt)nter systems. In this

case, consensus is defined as an agreement among compnters. In multi-

COml)uter systems, the consensus prot)lem is omnipresent. It is necessary

for handling synchronization and reliable conuuunication, and it at)l)ears

in resource allocation, task scheduling, fault diagnosis, and reconfiguration.

Consensus tasks take many forms in multicomlmter systems.

Figure l is tile model for fault management in a mnlti(:onlputer envi-

ronment in which each layer rel)resents a set)arate consensus prol)lem. At

the base of the mo(lel is the synchronization level. For a system to be fault

tolerant, there must be an agreement about time for fault detection and task

execution. The next layer represents the requirement for reliable communi-

cation. Fault-tolerant computers must agree on how and when information is

exchanged, and how many messages can be considered delivered or lost. The

third layer, diagnosis, is fllndamental to fault tolerance, for agreements must

t)e reache(I on task scheduling and on who is faulty and who is not. Finally,

tile fourth layer illustrates the need for agreement on resource allocation

and reconfiguration for efficient task execution and re(overy from potential

faults, lu our fault-tolerant system design framework, we add an availability

manager and application specific design methods that go on top of tile ker-

nel functions. This is shown in Figure 2. Another view of this franmwork is

illustrated ill Figure 3, in which functions in the kernel support al)pli('ations
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armed with api)lication specific techniques for fault-tolerant system design.

With the variety and complexity of the numerous applications in multi-

COml)uter systems today, we insist on this approach as it is our belief that

general techniques have some limitations and, when used alone, cannot as-

sure a high level of fault tolerance. We believe that, although the small

generic kernel may he proved to be correct, the correctness of real-world

applications, in most cases, cannot be proven. Hence, al)plication specific

techniques are necessary.

Reconfiguration and Resource Allocation

Fault Diagnosis and Task Scheduling

Reliable Communication

Synchronization

Figure 1: Consensus prol)lems in fault management.

In fault-tolerant system design, all of the consensus l)roblems should be

accomplished in a timely and reliable manner. In order to design a fault-

tolerant system, we need synchronization, communication, task scheduling,

fault diagllosis, and reconfiguration. This means that ea(:h layer simuld in-

corlmra,t(,, a,lg_rithnns I,o (_[li(:i(mlly s_lv(_ I,h_.s(, tasks, a._ w(_ll a.s lira l(whtliqm.s

that: cope with the various classes of faults.
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Application 1

Application n Application 2

,pplication n-I

Figure 3: Another perspective on fault-tolerant systems design framework.
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3 Efficient Consensus

Ill our design framework, we use consensus protocols to manage rednndaucy

and to handle the diagnosis of and recovery h'om faults. Since ally consensus

protocol must operate ill tile l)resence of faults, that is, the I)roto(:ol itself

must be fault-tolerant, our primary concern is to make consensus protocols

fault-tolerant and more efficient. This is achieved through tire use of deter-

ministic algorithms operating on a limited mmlber of nodes, as is done in

our tIierarchical Partitioning Method (HPM).

The ]|PM divides the system into many consensus partitions and orga-

nizes these into a hierarchy that permits efficient communication between

tile partitions. A partitioned system is a system that is divided into groups

of k processors with each group running all internal consensus protocol. The

||PM organizes the partitions hierarchically with separate consensus proto-

cols for each group at each level of the hierarchy. For example, Figure 4

shows an n = 27 processor system divided into three levels of partitions,

each containing k = 3 members. The final structure is a k-ary tree, k being

tile partition size, whose nodes are also partitions. The leaves of the tree,

i.e., the lowest level, contain all the processors in the system ill their parti-

tions. At this lowest level, each processor is involved in its local consensus

protocol. At the higher levels, only representatives from the lower levels

are involved in the consensus. In this way, a global consensus is reached,

although the information is distributed throughout tile system. The hierar-

chical organization allows for the efficient retrieval of whatever part of this

global information is required.

The driving assumption behind partitioning is that, in a large network,

there will be groups of processors that, to a large extent, operale inde-

pendently fl'om other processors. In this case, global diagnosis and global

consensus are not very useful. Therefore, we would like to create a mecha-

nism that allows the formation of local consensuses, the reconfiglJratioJ) of

local consensuses, and the efficient dissemination of the results of other local

consensuses. Hierarchical partitioning provides such a mechanism.

The ]I1)M is a design for an implementation of consensus due to the

choices a designer has in tailoring the IIPM to a particular system. This

flexibility includes choosing a particular consensus algorithm or set of algo-

rithms that meet the needs of the system fault model (an extensive survey

of consensus protocols may l)e found in [2]). For exami)le, we |lave studied

the IIPM using system diagnosis techniques, which are consensus protocols

designed to identify which processors are faulty and which are fault free,
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Figure 4: A 27-processor system partitioned into clusters of 3.
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and Byzantine agreement algorithms, which are consensus protocols whose

goal is to allow the fault-free processors to agree on some set of information

[1]. We found that tile IIPM can greatly reduce the number of messages re-

quired to reach consensus. Figure 5 shows this savings [1]. As a result, there

is a decrease in the time needed to reach consensus ill the partitioned sys-

tem over tile time needed to reach consensus in the global, non-partitioned

approach. This leaves more time for executing the system task set.

J3-

30-

25-

20 -

Messages (thousands)

15-

10-

_

_

Global

J

I I I I I I 1
0 200 400 600 800 1000 1200

Syslcm Size (processors)

Figure 5: A graph of message count as a function of system size n for the

IIPM and the global consensus algorithm using system diagnosis techniques.

The drawback of decreasing message counts by partitioning is that max-

imum fault tolerance is decreased. That is, the maximunt number of faults

tolerable in a partition is related to the number of processors in the par-

tition. Therefore, any partition containing less than the entire processor

population limits tile fault tolerance of the system. Yet, for large systems,

it is not likely that the required availability restricts partitioning. In this
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case, we studied tile effects of partitioning on the reliability of consensus,

Rco,zsensu_, or the probability that correct consensus is reached in each _nd

every partition [1].

We studied system diagnosis as it gives us more flexibility than Byzantine

agreement, because tile fault model allows the diagnosis and subsequent

repair or removal of faulty processors. Once system diagnosis is (:Oml)lete , we

can assume that the system is fault free. In terms of our measure Rco,_ens_s,

Tco,zsen,_s represents the time between subsequent executions of tile ltPM

using system diagnosis to achieve a certain reliability of consensus. That

is, if the algorithm is scheduled every 7'con_,_us time units, then the rate of

failure of processors should be such that, for each and every partition, the

number of faulty processors is less than or equal to the maximum number

of faults tolerable with probability Rcons_ns_,_. The assumption here is that

faulty processors are repaired at the end of each consensus period, thus, the

system size remains constant.

We have exantined how the Mean-Time-To-l?ailure (MTTF) of the pro-

cessors, the number of processors n, and the size of partitions k affect tile

consensus 1)eriod, 7_o,L_,_s_,s, required to meet a certain consensus reliability,

Rcon_,_.,, for tile IlPM using system diagnosis. We assumed that each par-

tition can diagnose at most t faults. Therefore, the reliability of a partition,

Rp_titlon, is the probability that no more than t processors will fail in that

partition. That is,

t

i=1

(;iven that the failure rate A is the inverse, of the MTTF,

RPE -- e -AT'_°"_'*_

in which T_on,,,_,u, is the consensus period. Also, given that R_o,,**,,_,, is

the probability that each of the n/k partitions is reliable, it follows that

and, therefore,

= l_n/k
Rconsensus "_partitlon

[ ±:,k -(k-i).v& ............ 'R_o,_,,_,,, = e -k'\T_ ............ k t,k_ic t ! - c -:_'L .......... ),
i=i
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When t=l, this equation simplifies to

Rco., o,u = [(1- - 'rrc.........+ .........

Using these last two equations, we can iteratively solve for the consensns

periodicity Tco,_,_n_,, for a given MTTF, system size, partition size, faults

diagnosable per partition, and reliability of consensus. The following graphs

show the effect on the consensus period of varying these vahms.

As an example, consider a 1000 processor system with partitions of size

5 that can each diagnose a single fault and whose processing and commu-

nication bandwidth allow the It PM using system diagnosis to be scheduled

every 10 minutes (0.167 hours). The table in Figure 6 shows us that with

processors whose MTTF is 100 hours we can expect a reliability of consensus

between 11.99 and 0.9!)9. If, on the other hand, the MTTF is 1000 hours then

we can either increase the cm,sensus period to between one and two hours

or we can ]eaw; 'i',:,,,L_,,_,,._ at 10 minutes aud expc, ct a co,sensus reliability

bett, er tlka.n 0.9999.

We introduced tim llierarchical Partitioning Method (IIPM) to reduce

tim effects of reaching consensus in large, distribnted systems, and we have

shown that the IIPM uses many fewer messages tilan a global consensus

algorithm, which implies that it takes less time. Because consensus tasks

are executed at the same time as otimr system tasks, they must not disrupt

tile network with large bursts of communication. Tile ltPM divides the

consensus into many independent tasks and keeps the consensus information

distributed, thus avoiding tim large message bursts that can occur in global

consensus algorithms.

The IlPM is a strong base on widch to build highly fault-tolerant sys-

tems; it has an availability that is adjustable by the system designer, it

reduces the time required to reach consensus by reducing the required nun>

ber of messages and, thus, increasing the system's ability to produce timely

results, and it may be based on any number of existing consensus protocols,

which makes it flexible enough to suit the system's fault model. We are

continuing to work towards a responsive (i.e., fault-tolerant and real-time)

consensus algorithm based on the IIPM that is improved in the areas of

availability, timeliness, flexibility and efficiency, as well as in transparency,

because a consensus mechanisnl shonht be available for ally consensus task,

including the consensus tasks of synchronization, communication, diagnosis

and reconfiguration.

The importance, of efficient consensus to Ollr system design may be. seen
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Figure 6: Consensus periodicity as a function of required consensus reliabil-

ity for various MTTF and n = [O00, k = 5, t = 1.
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in Figure 2. The lowest four layers of our framework depend on the system's

ability to reach a consensus among its processors. Therefore, the viability

of our approach to fault-tolerant systems relies on our ability to i)roduce an

efficient consensus algorithm. We feel the II PM delivers a.n effective solution

to this prol)lem.
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4 The Scheduler for Redundancy Management

Tile scheduler plays a critical role in tile operatidn of a multiprocessor sys-

tem, because scheduling in multiprocessor systems is tile process of allocat-

ing resources to tasks so the tasks are executed efficiently. The reason that

scheduling is widely studied is because, ill general, it belongs to tile class of

NP-complete prol)lems. Thus, a perfect solution to sche(luling does not exist

and scheduling policies or heuristics must be used. Since future systems will

be complex and must operate correctly even in the presence of faults, the

relative simplicity of the static scheduler must be relinqnished, and, instead,

dynamic scheduling, in which scheduling is performed "on-the-fly" as the

tasks arrive, must be employed. A good design for the scheduler is essen-

tial, because it plays a central role in a fault-tolerant system. Not only is

it relied on to arrange for tide efficient execution of aPl)lication tasks, [)tit

even fundanmntal system level tasks, such as executing i)rograms to achieve

synchronization or COIIS(!IDS1DSon who is faulty and who is lint, lusty have

to be handled by the scheduler, it must also manage redundancy, allocate

resources in the l)resence of faults, and be, itself, fa.ult tolerant.

Scheduling for fault tolerance is a novel aspect that must be incorporated

ill highly fault-tolerant systems. Tile scheduler has to handle the issue of

task fault tolerance. We expect the dependability requirenlent of all tasks

to be specified. The system will attempt to achieve that requirelnent by

adding redundancy to task execution when a processor cannot directly meet

the specified goals. In our view, dependability can be achieved by close inter-

action between tide scheduler and the Diagnosis and Recovery Layer (DRL).

The DRL, at periodic intervals, updates the scheduler about the status of

all processors (whether they are faulty or fault-free) and their dependal)ility,

such as their reliability or availability measnre. This information is used by

the scheduler to schedule the task to the api)ropriate location, llowever, if a

critical task requires a del>endal)ility that cannot be met directly by a single

processor, the scheduler attempts to form a processor group that meets this

need through task execution redundancy that is based on the processor's

dependabilities and fault models. There are two ways to add redundancy to

a system, space redundancy and time redun(lancy.

Space redundancy is achieved by replicating tile task over the processor

group. Assume that a task that demands an availability ai(t) arrives, and

its execution time has been estimated as r and its time to deadline, is el. In

this case, the scl,eduler creates a_ processor groul) that has a,D availability of

at least at over the time interwd 0-d, and it schedules the replicas of tlle
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task on each of tile processors of that group for 7- time units in the interval

0-d. This information is then passed on to the DILL, which is responsible for

forming a consensus about the result of tile tasks and handling any faults in

the replicas. Note that other tasks may also I)e scheduled on those processors

over the remaining time.

Time redundancy is achieved by repeating tile execution of a task on

a single processor or by reconfiguring the processor group. Let us assume

that a task has the same timing requirements as in the previous case. In

the first case, the task may recover from a temporary fault if its execution is

repeated. We can evaluate availability of such a task as at2 = ala2 + all1 -

a2)+a2(1- a_). Note that a_(tl) and a2(t2) may vary as they are executed
at different times. In the second case, the I)IH, reports the availabilities of

various processors. The scheduler selects the processor or processor group

with availability of apg. This means that the processor or processor group

is likely to be down for l - apg percent of tile time d. Thus, the scheduler

schedules the task for r + (1- apg)d instead of r time units, and, if a failure

occurs and the processor group is down, there is still enough time for it to

come up and recover from the fault and execute the task successfully.

A scheduler is itself a part of the fault-tolerant system and, as such,

should be fault tolerant. Since the dynamic scheduling of tasks with non-

deterministic characteristics on multi-processors is NP-complete, the time

to obtain an optimum solution, if one exists, will be prohibitive. A schedul-

ing policy.or a scheduling heuristic would have to i)e used instead, flow-

ever, one has to guarantee that the scheduler itself would obtain a schedule

in a timely fashion. A sche(hding policy such as First-come-first-served,

Earliest-deadline-first, Least-laxity-first, etc., has the. atlvantage of having
deterministic times to schetlule tasks, but _ gene.ri(: search-technique such

as tabu [16], we believe, may be able to ol)tain acceptable schedules with

a much lower development cost and a greater simplicity in design. In a

complex system, several scheduling algorithms may need to be eml)loyed to

achieve schedules of acceptal)le quality. It may also turn out that a generic

search heuristic gives quality solutions while I)eing siml)le and robust (in the

sense of being able to solve any scheduling problem).

The scheduler, l)ecause it is at the core of an operational system, must be

protected from faults. A scheduler failure is catastrophic, since no tasks can

be executed while a scheduler is down, so it is necessary that the responsive
scheduler 1)e fault-tolerant. This means that there shouht be multiple loca-

tions where a scheduler is executing, so a sillgle point failure cannot a[rect

the entire system. An issue that has a dire(:t bearing on this, as well as on
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performance, is whether tile scheduler is centralized or distributed. A fault-

tolerant centralized scheduler consists of multiple replicas, each of which

cooperates to obtain a schedule. Each of these replicas can be identical, or

each may execute a different scheduling algorithm, which would result in

a hybrid search technique [15] [16]. For a distributed scheduler, each pro-

cessor would have its own local or global scheduler that operates with tile

provision that the scheduler of another processor will take over in case of

a failure. The local scheduler scheme requires a load-sharing strategy to

handle additional load at a processor in case of transient overloads. Global

schedulers need consensus to select the best schedule among the fault-free

processors and, therefore, effectively manage redundancy.

4.1 Estimating the Number of Required Processors

An important issue that must I)e addressed when designing a system is to

determine how many processors are require(I to meet system load require-

ments. We investigated the problem of determining probal)ilistically the the

number of processors required in a real-time system based on the task char-

acteristics --- specifically, the interarrival time distribution, the execution

time distribution, and the distribution of the time to deadline of tile task.

Assuming that none of these task characteristics are likely to be determinis-

tic in a complex system, one would have to accept probabilistic estimates of

how manyprocessors are needed. In [18], we present a technique for obtain-

ing such probabilistic estimates for an infinite-server queneing system that

can provide an upper bound on the actual number of processors that may

be needed.

4.2 Conclusions

The number of l)rocessors determined in the way (lescril)ed in Section 4.1 is

an upper bound on the actual mmd)er of l)rocessors needed, which is largely

dependent on the scheduling algorithm or policy used. For exl)onential inter-

arrival time, we can exactly predict the numl)er of processors needed for any

distribution of execution times and the time to deadline. To determine the

number of processors in such a case, one requires only the average execution
time of the tasks and not the entire distribution of the execution times and

the time to deadline. When the interarrival time is an arbitrary distribution

that is not exponential, we h;tve suggested an approximation to calculate

the probability of the numl)er of l)roccssors required. We have verified the
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correctness of our results by simulation of all infinite server queueing system.

These results should be useful to designers of real-time systems in estimat-

ing the number of processors needed for all application. These results are

also useful for predicting the number of processors for effective redundancy

management under a variety of fault models.
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5 Application-Specific Fault Tolerance

Fault tolerance usually requires redundancy in space (including hardware

and software) or redundancy in time (see Fig. 7a). Our goal ill this re-

search was to achieve fault tolerance with low space/time overhead. In

Space

FAULT-TOLERANT SYSTEM

NORMAL SYSTEM

(a)

Time

Space

I:igure 7: (a) Time _lJl(l Sl)a('e ,w,rh(r;l,l._ m'{_d,_,l fi,r I';i.iJll,.tg)JeralJt ._y_l,eln

implementation. (I)) Desirable goal: fault tolerance with low space and time

overheads.

our approach, we exploit applicatiou-specific properties that provide fault

tolerance with low space and time overheads, in addition to classic, gen-

eral methods in fault tolerance. We are not proposing that fault tolerance

should be addressed only at the application level through the use of surviv-

able algorithms. Rather, our thesis is that al)plication-sl)ecific properties

facilitating low-cost fault tolerance should also be considered in the design

process along with other complen_entary techniques at the har(lware or sys-

tem level, such as self-checking or replicated logic, error detecting/correcting

codes, checkpointing, and process/processor rel)lication. We base our strat-

egy for designing fault-tolerant applications on a comprehensive formalized

scheme for fault tolerance called NEST [10].

The concepts investigated in NEST lead us propose a novel fault-tolerant

technique based on the exploitation of Natural Redundancy in applications.

It also facilitated the quantification of the space/time overheads incurred by

existing fault-tolerant techniques.
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5.1 NEST: A General Formalized Scheme for Fault Toler-

ance

The NEST scheme for fault-tolerant application design, described ill [10], is

based on a formal study of fault-tolerant algorithmic properties. These fault-

tolerant properties may be provided at the hardware, system, or application

level, but they are exploited at the application level. The formalization

of fault-tolerant properties provides a common ground for studying fault-

tolerant systems. In this context, rednndancy is studied as a safety property

and recovery is studied as a progress property. As a. result, it is possible to

define in a rigorous way what it means for an application to be fault tolerant.

Another consequence of this study is the outline of formal techniques

to add fault-tolerant properties to apl)lications when they are not present.

This way, NEST provides both a model and a design methodology for fault-

tolerant applications. Two algorithmic transformations, superposition and

concatenation, are defined. Superposition can be used to add safety proper-

ties, such as redundancy, and concatenation can be used to to insert progress

properties, such as recovery, into applications. The insertion of redundancy

is called invariant embedding and the addition of recovery properties is called

progress securing.

A complete descril)tion of NEST, inclu<ling the formalization of fault-

tolerant properties, a formal definition of application fault tolerance, and the

proposition of a methodology for fault-tolerant parallel application design,

is presented in [10].

5.2 Naturally Redundant Algorithms

It is obvious that the addition of redundancy and recovery procedures to an

application will cause it to run with some time overhead. Since responsive

systems must have fault tolerance and still meet deadlines, it would be nice

to have applications or algorithms that are already redundant in some way.

If these algorithms exist, one would need still to add a recovery procedure

to them to make them fault tolerant, but no extra time overhead would be

necessary to add redundancy. This idea lead to the following definition of a

Naturally Redundant Algorithm:

Definition 5.1: If a given algorithm .A maps an input vector X =

(xix2...xn) to an output vector Y = (yly2...ym) and the redundancy relation

{Vyi, Yi E Y, 3 .T'i [ Yi : .Ti()t: - {Yi})} hohts, than .A is called a Natu-
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rally Redundant Alyorithm. Each xi(yi) may be either a single component

of the input (output) or a subvector of components.

From this definition, we can see that a naturally redundant algorithm

running on a processor architecture P has at least the potential to restore

the correct value of any single erroneous component Yl in its output vector.

This will he the case when each _'i is a fimction of every yj,j _ i. If each

.T i is a function of only a subset of the components of Y - {Yi} then the

algorithm would potentially be able to recover more thall one erroneous Yi.

In many a.pplications, processors communicate their intermediate cal-

culations to other processors as the computation proceeds. In such cases,

an erroneous intermediate calculation of a faulty processor, if allowed to be

further disseminated throughout the architecture, can corrupt subsequent

computations of other processors. It is thus desirable that the correct cal-

culation value(s) be recovered before they are further propagated to other

processors. This motivates the definition of algorithms that can be divided

in phases that are themselves naturally redundant.

Definition 5.2: An algorithm .4 is called a IJha.sc-wi._c 7l,turally rcduluhmt

algorithm if (a).4 can I)e divided in I)hascs so the outl)ut vector of one phase

is the ini)ut vector for the followitlg phase, and (b) the output vector of each

phase satisfies the redundancy relation.

We focused our attention on phase-wise naturally redun(lant algorithms.

In order to use natural redundancy for achieving fault tolerance, we use

mappings to a multiprocessor architecture so in each phase, the components

of the phase output vector are computed independently (by different pro-

cessors). Natural redundancy allows for a forward recovery approach, since

there is no need to backtrack the computation to obtain the correct value

for an erroneous output vector comt)ouent. A naturally redundant algo-

rithm can be made fault-tolerant by adding specific functionality to detect,

locate, and recover from faults using its natural redundancy. In [11], two

examples of naturally redundant a.lgol'ithnls, the solution of Laplace equa-

tions and the cornputation of the invariant distribution of Markov chains,

are studied in depth. The results of the implementations are presented

and discussed. The major advantage of exploiting natural redundancy is

the ability to achieve fault tolerance with tow performance degradation and

small space/time overhead.
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5.3 A Comprehensive Methodology for Fault-Tolerant Par-

allel Application Design

Based on the rigorous framework proposed in NEST, a comprehensive design

methodology for fault-tolerant parallel applications can be summarized in

three steps:

1. Clearly state system fault tolerance requirements and limitations.

2. Verify if the application (or an existing version of the algorithm) has

inherent characteristics that cause some (or all) of the desired fault-

tolerant properties to be met. If such properties exist, check if the

fault tolerance thus provided meets the requirements of the previous

step. If properties exist meeting all requirements then stop, otherwise

execute the next procedure.

3. Apply general techniques that transform the existing version of the

application so it acquires the missing properties and meets the desired

fault tolerance related requirements.

[n the first step, the designer should verify requirements such as (a)

what classes of faults inust be tolerated by the system, and (I)) what are the

acceptable cost levels, in terms of sl)ace and time overheads, the system can
bear in order to achieve fault tolerance.

In the second step, the designer checks if the application (or an already

existing version of the algorithm) is inherently fault tolerant, self stabiliz-

ing, has some natural redundancy, or any other characteristic that could

facilitate a fault-tolerant design. If this is the case, it is still necessary

to ensure that the fault tolerance resulting from these properties meets all

systems requirements. For instance, if the intrinsic characteristics of the al-

gorithm enables it to tolerate fail-stop faults, but multiple temporary faults

are expected to affect the system, another fault-tolerant technique that can

handle temporary faults must t)e used, and, if the intrinsic characteristics

of the algorithm enable it to tolerate the (:lasses of faults stated in the re-

quirements but with higher time overhead than the system can bear, a more

time-efficient fault-tolerant technique must be utilized. In summary, if some

or all of the desired properties are missing or existing properties do not

meet system requirements, the designer should apply general fault-tolerant

techniques.

Step 3 aims to apply systematic transformation metho(Is to an applica-

tion or algorithm in order to add the missing fault-tolerant properties that
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will meet the desired requirements. These systematic transformations can

be accomplished l)y the aJgorithm composition techniques studied in [10].

In order to insert redundancy, one would use the invariaut embedding tech-

nique, which can be implemented by algorithm superposition. Tile practical

issue here is to provide an invariant embedding that is both feasible and

efficient to compute. Again, the specific characteristics of the application

may favor one approach over several others. In order to add recovery pro-

cedures, one would use the technique we called progress securing, which can

be implemented by algorithm concatenatio1_. It should be noticed here that

the type of redundancy (inherent or inserted to an algorithm) will largely

determine the recovery procedures that may be implemented.

5.4 The Evaluation of Fault-Tolerant Techniques: The Cost/Benefit

Relation

We evaluated a number of existing fault-tolerant techniques [12] for tile

space and time overheads they cause, and listed the kinds of faults they

are able to tolerate. First, we discuss our model of computation. The

techniques we cover are replication and voting [19], (:heckpointing and roll-

back [9], algorithm-I)ase(t fault tolerance [7], self stal,ilization [5], iul,ereut

fault tolerance [a], an(I the approach based on natural redundancy [11].

In NEST, we adopted a model of computation that is based on the bulk-

synchronous model of parallel computation t)roposed by Valiant [20]. ]n

that model, the execution of a parallel algorithm proceeds in supersteps.

The processes participating in a snperstep are initially given a step of L

time units to execute a specified armount of processing. After each period

of L time units, a global check is performed to determine if the superstel)

has been completed by all participating processes. If that is tile case, the

computation advances to the next superstep. Otherwise, the next period

of L units is allot.ate(! to the unfinisl,ed superstep. The model assumes the

existence of facilities for a barrier synchro,dzation of 1)rocesses at regular

intervals of L time units where L is the periodicity para,_eter. The vahte of

L may be controlled by the program, event at runtime. This synch,'onization

mechanism captures in a simple way tile i(lea of globaJ synchronization at a

controllable level of coarseness. The realization of such a mechanism in hard-

ware would provide an efficient way of implementing tightly synchronized

parallel algorithms without overburdening the programmer.

In Table 1, the usefldness, in terms of tolerated faults, and tile cost, in

terms of space and time redundancy, for various fault-tolerant techniques is
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shown. In that table, N is the numl)er of processors ill the normal (non-fault-

tolerant) version of tile aJgorithm, and T is tile total number of supersteps

necessary for the execution of the normal algorithin in the absence of faults.

Space redundancy is measured in terms of extra processors.

Replication with voting requires the largest amount of space overhead.

Processors are at least triplicated. On the other hand, the time overhead is

minimal. If a fault occurs in one superstep, recovery is executed in the next

superstep. This techniqne covers a large set of faults, I)oth temporary and

permauen t.

A considerable amount of space redundancy is also involved in the check-

pointing and rollback technique. For each varial)le in the normal algorithm,

some disk space must be allocated in the f_Mt-tolerant execution to store

the latest correct vaJue for that variable. Evidently, extra code is necessary

to do that, but no extra processes (or processors) are needed. The time

redundancy required for recovery may vary depending on how far away, in

terms of number of supersteps, the superstep in which the fault occurred is

from the one in which the latest correct state was saved. An upper I)ound

for this distance is Icp, which is the interval, in terms of number of SUl)er-

steps, between two checkpoints. This technique is usually used to tolerate

temporary fa_zlts.

Algorith111-based fault tolerance, which has been maiuly used with ma-

trix problems, is accomplished with small space overhead and minimal time

overhead. Two extra processors may be required to detect, lo(:ate, an(I

correct single teml)orary faults, but basically only one extra superstep is

necessary for recovery.

Self stabilization requires no space redundancy. After the occurrence of

a fault, the computation can proceed from the resulting state and still reach

the expected final results. On the other band, the time redundancy necessary

for the algorithm to converge after the occurrence of a fault is not predictable

and may be quite large. In an experiment carried out in [11] with an iterative

algorithm for solving Laplace equations, the time overhead varied between

one extra iteration and 5.5 times the number of iterations necessary for the

complete execution of the algorithm in the absence of faults. This overhea(t

depends on how far, in terms of the nurnber of iterations, the state resulting

from the fault is from the fixed point. In [4], an experiment was done with

a distributed system that was a restricted case of the problem proposed by

Dijkstra in [5]. In that experiment, the number of state transitions and

extra messages needed for the system to reach a correct state after a fault

occurrence were O(N _'s) and O(N_), respectively, in which N is the number
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of processes. SelLstabilizing algorithms can only tolerate temporary faults.

Inherent fault tolerance also requires no space redundaucy. This type

of fault-tolerant approach can only tolerate fail-stop faults. The occurrence

of a fault causes a process to be permanently down (tile processor stops).

Since processors independently cooperate to achieve a common goal, and

supposing that each processor contributes equally in this task, if one process

fails, the upper bound on the number of extra supersteps necessary for

the remaining processes to complete the job is equal to _-l" This upper

bound is obtained calculating tlle number of supersteps necessary for N - 1

processes to execute the complete algorithm (considering that N processes

do it within T supersteps) and subtracting it from T.

In terms of extra work for the programmer, replication with voting,

checkpointing and rollback, and algorithm-based fault tolerance require the

algorithm to be redesigned to become fault tolerant. The main advantage of

the self-stabilizing and the inherent fault tolerance approaches is that they

impose no extra burden on the programmer. The approach based on natural

redundancy falls somewhere between these extremes. It requires some extra

coding to add a recovery procedure to the algorithm, but does not require
the creation of redundant states.

For a natural|y redundant algorithm to be made fault tolerant, there is

no need for state extension or extra proc.esses/processors (A characteristic of

the algorithm is that its variables are already re<lun<lant algorithms in [11]).

This tech!fique requires no extra variables, processes, or processors, and

has very low time overhead. Recovery is executed in one superstep that

occurs immediately after the execution of the superstep affected by a fault.

The fault coverage offered by this technique is also attractive. A naturally

redundant algorithm can recover from both temporary and permanent single

faults.

In terms of applicability, replication with voting, and checkpointing and

rollback are generally applicable techniques. Algorithm-based fault toler-

ance, self stabilization, inherent fault tolerance and the approach based on

natural redundancy are apl)lica.tion specific.

One can intuitively perceive that there is a fundamentM tradeoff ill the

design of fault-tolerant algorithms hetween space and time redundancy. For

a given fault-tolerant techniqne, a higher space redundancy implies a lower

time redundancy to tolerate faults. The converse is also true (see Figure 7b).

This intuition is confirmed in practice when the diverse fault-tolerant tech-

niques are compared. The replication with voting technique, which implies

the largest space redundancy, requires minimum time overhead for recovery.
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TYPE OF TECtINIQUE REDUNDANCY FAULTS TOLERATED

Triplication with Voting

Checkpointing and

Rollback

Algorithm-based
Fault Tolerance

Self Stabilization

Inherent Fault Tolerance

Approach Based on

Natural Redundancy

SPACE

# of processors
needed extra

3N 2N

i

N+2 2

N

N

N

TIME

# of supersteps
needed extra

T+I 1

T -[-[CP ICp

T+I 1

? ?

T*N T

'T+I 1

multiple temporary

and permanent

multiple temporary

single temporary

multiple temporary

multiple fail-stop

single temporary

and permanent

Table 1: Necessary space and time redundancy and faults tolerated by dif-

ferent fault-tolerant techniques.

()n the other hand, tile self-stabilizing technique, which requires virtually

no space overhead, may incur a severe time redundancy. A balanced situ-

ation, corresponding to a fault-tolerant algorithm incurring low space and

time overheads, couhl be represented by the point Po in Figure 7b.

Considering the tradeoffs between the various fault-tolerant techniques,

the approach based on natural redundancy, when this property is already

present in the application , results in the most attractive cost/benefit ratio,

if only single faults are likely to occur (which is true in most situations). It

requires no state extension, only one superstep of time overhead, and pro-

vides high fault coverage a.t the cost of a small degree of algorithm redesign.

The results listed in [11] fidly support this claim.

5.5 Conclusions

The NEST predicate-based approach was introduced. It is a formal method

of making algorithms fault tolerant. The NEST scheme was implemented,

and a comparative analysis of a variety of fault-tolerance techniques was

performed. Our technique, called naturally redundant algorithms, requires

small time overhead, and can successhdly tolerate single temporary and
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permanent faults. This approa(:h is an attractive alternative to the ]Iybrid

Algorithm Technique, which is introduced in the _next section.
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6 The Hybrid Algorithm Technique

The idea of combining two or more different algorithms into a single hybrid

algorithm was inspired by the possibility that the new algorithm will per-

form better than any one of its component algorithms. The result is a new

class of algorithms grouped under the umbrella of the hybrid algorithms

technique(HAT). The hybrid algorithm technique combines the strengths of

the individual algorithms so that the resulting algorithm has a combination

of the following advantages:

1. it can produce better sohtions,

2. it can produce solutions in less time,

3. it can tolerate software faults, and/or

4. it can effectively handle problems with larger input sizes, especially

with respect to NP i)roblems.

These advantages seem to be gained without major new disadvantages.

Figure 8 shows the basic idea underlying the HAT. Various algorithms co-

operate towards performing a computatiou. At regular intervals, the results

of the computation t)erformed so far are compared by all algorithms and a

good solution is distributed to MI. This l)rovides a very good mechanism for

tolerating,software or hardware faults, because any incorrect result will be

weeded out during the consensus and exchange phase.

To demonstrate the capability of IIAT, we have implemented a hybrid

algorithm search technique for solving combinatorial optimization problems.

To guarantee the optimum solution for these problems, all possible solutions

must be considered. Unfortunately, many of these problems fall into the class

of NP-complete, and therefore the set of all possible solutions is too large

to consider, lleuristics are therefore used to test only the more l)romising

subsets of the possible solutions. The existing algorithms cannot, therefore,

assure that the optimum solution will be found.

Several algorithms exist that solve combinatorial optimization problems.

llybridization of some of these algorithms should colnbine the strengths of

each algorithm's respective heuristic techniques and form a better algorithm,

which ought to produce solutions that are closer to optimal, or in less time,

or both. An algorithm that produces satisfactory results in less time can

also be applied to larger problems.
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Figure 8: Overview of Ilybrid Algorithm Technique
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We expect our new hybrid algorithm search technique to be general and

applicable to the majority of optimization problems. Some examples of

problems where the hybrid algorithm search technique could be applied are

in computer-aided design (e.g., integrated circuit or printed circuit board

placement and routing), scheduling, resource allocation, test generation, in-

teger programming, and a number of graph heuristic algorithms such as

coloring and partitioning. To demonstrate the viability of our hypothesis

of increased performance, we chose the Traveling Salesman Problem (TSP),

which is an easily defined problem in combinatorial optimization research.

The problem consists of finding the shortest Hamiltonian circuit (a circuit

that includes every node) in a complete graph. The nodes of the graph

represent cities and the edges are weighted with the distance between each

pair of cities.

Our objective was to implement two different combinatorial optimiza-

tion algorithms such that they may execute in parallel and exchange data

periodically. The goal was to study the time efficiency and cost of mixing

the simulated annealing [8] and tabu search [6] algorithms into a new par-

allel hybrid search algorithm with the costs of executing these algorithms

independently. These three search algorithms, simulated annealing, tabu,

and hybrid, were tested on the move of the 2-opt heuristic, which is based

on swapping pairs of edges [16]. Experiments have been conducted on seven

well known problems from the literature, namely, the 33 city, 42 city, 50 city,

57 city, 75 city, 1{}0 city, and 532 city prol)lems. Unlike the other l)roldems,

the 50 city and tile 75 city problems have no known optimal solution.

6.1 Simulated Annealing/Tabu Search Hybrid (SATH)

Simulated annealing and tabu search use very different approaches to search

for optimal solutions to combinatorial optimization problems. Although

both of these algorithms provide good results on some problems, neither

can guarantee the optimal solution will be found in real time. This, of

course, leaves room for improved algorithms. We have therefore developed

a hybrid algorithm in an attempt to produce better performance.

SATIt is a simulated annealing/tabu search hybrid algorithm, the first

in a new class of easily parallelizable hybrid algorithms. SATt[ incorporates

both simulated annealing and tabu search as low level algorithms with a

high level algorithm to mix the results from each. The idea is to execute

each low level algorithm for some specified amount of time, the results of

which are evaluated by the high level algorithm. The low level routines are
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then restarted in a more promising area of the solution space. This process

is repeated as many times as is necessary or desired.

The SATI! aJgorithm can t)e realized with the simulated annealing and

tabu search portions implemented as subroutines. These subroutines could

be executed, one after the other, followed by analysis of the results by a

higher level routine. However, one of the most important features of this

hybrid algorithm is the ease with which it may be executed in parallel. Each

low level algorithm can be executed in parallel with a supervising process

to synchronize execution and analyze results. This opens up the possibility

of executing several low level algorithms in parallel, any number of which

may be instances of simulated annealing or tabu search with different oper-

ating parameters. Interprocess communication is minimal and only occurs

between a low level algorithm and the single high level algorithm. Speedup

can therefore be linear with the number of processors as long as the numl)er

of processors does not exceed the number of ]ow level algorithms.

6.2 Implementation of SATH

We implemented our SATll algorithnl t)y allocating a separate process for

each part of the algorithm. The basic implementation includes one main

process and two child processes. When the program is executed, a main

process is generated which reads in the problem definition. The main process

then creates a set of child processes, one of which is a simulated annealing

process, the other of which is a tabu search process. After specified time

intervals, the child processes are halted and the main process compares their

results. It selects a good solution for the child processes to continue with. A

good solution might be the one with the least cost. If the tour with the least

cost had already been given to the child processes, passing the same tour

again will result in cycling. To prevent this fl'om happening, the tour with

the next to least tour (if not previously encountered) is made the common

starting point for the child processes.

Other criteria might also be applied for defining a good solution. In our

implementation, all the processes merge at a common point in the solution

space when the tour with the least cost is distributed to all of them and

is used as a starting point for the next iteration. Several other apl)roaches

might be considered, one of them I)eing t)seudorandonfization. In this case,

each process starts off with a pseudorandom tour after the information has

been exchanged. This can I)e achieved by maintaining a history of the

search space visited be each process in the i)revious iterations. Thus the
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new starting tours after the information exchange will be composed fi'om

previous history stored in the long term memory and information about the

covered search space.

Implemented in this fashion, the SATtt algorithm can be executed on

a single processor or on multiple processors with very little effort. The al-

gorithm is also expandable by adding additional simulated annealing and

tabu search processes executing with different search parameters. The algo-

rithm can be expanded in this way until there is a process for every available

processor.

In our SATH algorithm, each simulated annealing process executes with

a different annealing schedule. The schedules are chosen as in the accel-

erated simulated annealing algorithm described in [16]. When the SATII

algorithm had multiple tabu search processes, each process had a different

tabu condition and a corresponding tabu list size to distribute the search in

the solution space.

6.3 Experimental Results

Our experiments with the traveling salesman problem have illustrated the

advantages of using a hybrid search technique based on mixing simulated

annealing and tabu search algorithms. The hybrid algorithm performs very

well for all of the investigated problems, namely 33, 42, 50, 57, 75, 100 and

532 city problems. It holds considerable potential for reducing execution

time for solving NP-complete problems and at the same time improving the

quality of the solution. For a detailed description see [16] and [17]. With

the advent of parallel processing in the computing environment, it becomes

especially attractive to exl)loit the inh('J'ent parallelism in the prol)osed al-

gorithm. A major advantage of the proposed approach is the ability to

tolerate software faults due to multiple algorithm implementations. In addi-

tion, hardware faults can be tolerated in the multiprocessor implementation

of the HAT. Further study of IIAT will concentrate on the possibility of

using genetic search algorithms for the selection/consensus phase of the al-

gorithm. We strongly believe that this approach will further enhance the

fault tolerance and performance of the ltAT method.
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7 Summary and Conclusion

As computer systems proliferate and our dependence on them increases,

fault tolerance is becoming one of the most sought after qualities in com-

puter and communication systems. Our research focused on the foundation

for such systems using consensus, scheduling, and application-specific tech-

niques to ensure effective redundancy management and the formal construc-

tion of survivable algorithms.

In our framework, the concepts of consensus and scheduling are funda-

mental. We have developed an efficient consensus algorithm based on the

Hierarchical Partitioning Method. We have also specified a scheduler capa-

ble of reconfiguration even in the presence of faults, and we devised methods

of estimating the number of processors to handle all tasks efficiently even in

the presence of faults.

We pursued application specific methods for survivable algorithm design,

because we strongly believe that high fault-tolerance can only be achieved by

combining an ultrareliable kernel with application specific techniques. We

also develol)ed an alterllative met hod, the hybrid algorit h m t(_ch niq ue, for

making algorithms survivable. Our current research has been directed to-

wards introducing fault tolerance in reaLtime systems. These fault-tolerant

real-time systems, called responsive systems [13], are required for very crit-

ical applications, such as NASA's fllture Space Station. Redundancy man-

agement to obtain fault tolerance in such system is a challenging task due

to the additional constraints of real-time and criticality of application. Our

approach favors a comprehensive design of such systems, including specifica-

tion, modeling, anti design for redundancy management and recoverability.

In the future, the universal consensus algorithms for synchronization,

reliable communication, diagnosis, and reconfiguration will be developed,

and a scheduler that works in a reliable and timely manner even in the

presence of faults will be implemented.

We believe that our research will have an impact on the design of fu-

ture fault-tolerant, parallel/distributed systems, which aim for high avail-

ability, low space/time overhead, and effective integration of general and

application-specific techniques.
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